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We investigate second-harmonic generation (SHG) from aperiodic optical superlattices in the regime of pump 
depletion, where the influence of typical fabrication errors which can be introduced by the random  fluctuation 
of the thickness for each domain in the simulation is considered according to the actual case. It is found that 
both the SHG conversion efficiencies calculated in undepleted pump approximation (UPA) and an exact 
 solution decrease when the fluctuation gets larger. However, the decreasing degree is related to the wavelength 
of the fundamental wave (FW), and the longer the FW wavelength, the lesser the corresponding conversion 
efficiency reduction. A relative tolerance with respect to SHG conversion efficiency calculated in UPA and 
exact solution is defined in a previous work, in which a typical model based on the relative tolerance curves is 
proposed to estimate the SHG conversion efficiency. The simulation results exhibit that the relative tolerance 
curves are basically coincident with the standard curve when the random fluctuation is very small (typically 
below 1%). However, as the fluctuation increases, the relative tolerance curves exhibit a large deviation from 
the standard one, and the deviation is also determined by the wavelength of the FW.
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Using an electric poling technique for domain inversion in 
ferroelectric crystals, the quasi-phase matching (QPM)[1,2]  
has been extensively used in various  superlattices, 
including the periodic[3,4], quasi-periodic[5–7], nonperiodic[8]  
optical superlattice, aperiodic optical superlattice  
(AOS)[9–12], and disorder domain configuration[13,14]. Note 
that all these structures aim at obtaining good phase 
matching and enhancing the optical frequency conver-
sion, mostly focusing on second-harmonic generation 
(SHG). It is well-known that QPM is obtained under 
the undepleted pump approximation (UPA). However, 
when the conversion efficiency of SHG is high enough, 
the depletion of the fundamental wave (FW) cannot be 
ignored. Based on this case, more attention is focused on 
achieving compact and high-power laser pulses via SHG 
taking pump depletion[15–20] into account. Recently, Zhao 
et al. reported the application of multiple QPM grating 
designed in UPA for SHG in the regime of pump depletion.  
The results show that the AOS sample devised in UPA 
applies to a general situation of low and high conver-
sion efficiencies of SHG, and a practical sample can be 
accurately evaluated by a developed model which can 
be shown by a relative tolerance curve, called the stan-
dard curve in this letter. The relative tolerance is based 
on the SHG conversion efficiency calculated in UPA and 
exact solution, which is determined only by the conver-
sion efficiency with no relation to the pump intensity, 
pre-assigned wavelength, sample configuration, and the 
nonlinear media.

For the AOS configuration, samples are divided 
into layers[21] arranging as alternating orientation of 

 polarization, and the width of individual domain is 
optimized by simulated annealing (SA) algorithm. 
 However, fabrication errors inevitably exist and should 
be considered for an actual sample. The results for the 
perfect AOS sample are provided in Ref. [18], however, 
whether the conclusion proposed by Zhao et al.[18] are 
still valid with the typical fabrication errors has to be 
considered for realistic application. That is to say, how 
the random fluctuation impacts on the conversion effi-
ciency of SHG in UPA and exact solution; whether a 
relative tolerance curve will be deviated from the stan-
dard curve is still in question. In this letter, we focus 
on investigating the above issues. We start with theo-
retical model for necessary formulae used in calcula-
tions, the simulation results are presented with analyses 
subsequently and conclude with a brief summary.

Firstly, we discuss a one-dimensional AOS sample 
made by LiNbO3 crystal layers, the directions of polar-
ization vectors in successive domains are opposite as 
are signs of nonlinear optical coefficients. However, the 
width of each layer may be determined by the specified 
optical parametric processes. Each domain is parallel 
to the yz plane, and the propagation and the polariza-
tion directions of incident light are along the x and z 
axes, respectively. In the AOS sample, a FW ω1 = ω 
is perpendicularly incident onto the surface, and the 
 second-harmonic wave (SHW) with ω2 = 2ω is gener-
ated by nonlinear optical process. In the assumption 
of slowing wave variation of field amplitudes, the equa-
tions governing the propagation of the FW and the 
SHW are



 S10501-2  

COL 13(Suppl.), S10501(2015)  CHINESE OPTICS LETTERS January 30, 2015

red, blue, and green curves represent δ = 0.01, 0.03, and 
0.05, respectively. It is found that for the black curve, η 
exhibits significant uniformity for the three pre-assigned 
wavelengths, except for the two unexpected peaks with  
λ = 0.984 and 1.082 µm appearing in the vicinity of λ1 and 
λ2, which denotes that the AOS sample can also achieve 
high and nearly coincident SHG conversion efficiency for 
an exact solution. For the other curves, the high conver-
sion efficiency can also be achieved for the preset mul-
tiple wavelengths. However, the uniformity of the peak 
values is destroyed and the corresponding peak values are 
decreased with increasing δ. For example, when δ = 3%, 
the η for λ1 reduces from 0.52 to 0.38, changing about 
26%; for λ3, it varies from 0.52 to 0.48, decreasing about 
6%. It is found that the longer wavelength suffers from 
lesser reduction in SHG conversion efficiency, which leads 
to the inconsistency of the peak values.

In order to further reveal the characteristic of the SHG in 
the constructed AOS with the consideration of fabrication 
errors, the variation of exact solution with the sequence 
of domain for different random  fluctuations δ at the three 
wavelengths are shown in Fig. 2(a) for λ1 = 0.972 mm,  
Fig. 2(b) for λ2 = 1.064 mm, Fig. 2(c) for λ3 = 1.283 µm, 
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where k1 = n1 ω/c (k2 = 2n2 ω/c), c is the speed of light 
in vacuum, n1(n2) is the refractive index of the mate-
rial at the FW (SHW) frequency, and ∆k = k2 − 2k1  
denotes the wave vector mismatch between FW and 
SHW. In the designation, we use

 ( ) ( )2 332 | | ,x d d xc = �  (2)

where d� (x) (taking a binary value of 1 or −1)  represents 
the spatial distribution of domain orientation. Since 
the field can be written in its real and imaginary parts 
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where u2
a (x) represents the normalized intensity, L is 

the length of the sample. The conversion efficiency is 
given by
 ( )2
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Via several substitutions and integrals similar to Ref. 
[18], the exact solution u2(xn) can be obtained as long 
as the domain configuration is given. Thus, the corre-
sponding conversion efficiency can be achieved after the 
AOS sample is constructed.

We adopt the following parameters in the designation 
of the AOS as follows: the pre-assigned FW wavelengths 
are λ1 = 0.972 mm, λ2 = 1.064 mm, and λ3 = 1.283 µm. 
The number of domains N = 1800, and the thickness of 
a single domain ∆x = 3 µm. We set the intensity of the 
incident light waves as I = 1.0×1011 W/m2 and d33 = 27.0 
pm/υ. An AOS sample which can achieve the above three 
wavelengths with high enough and nearly identical con-
version efficiency of SHG is designed by the SA algorithm 
in UPA. We impose a random distribution function aa in 
the range of [0, 1] on the thickness of each block. There-
fore, the thickness of the ith block in an actual sample 
can be written as dx(i) = ∆x + (aa − 0.5)/0.5*∆x*δ in 
our simulation. Here ∆x = 3 µm is the thickness of every 
block adopted in the perfect AOS sample. It can be 
deduced that δ stands for the range of fabrication errors 
and 0 ≤ δ ≤ 1. For example, δ = 0.01 means ∆x taking 1% 
random fluctuation around its accuracy, thus ( )dx i x

x
− ∆

∆
 

will be in the range of [−0.01, 0.01]. The conversion effi-
ciency for exact solution as a function of wavelength with 
different random fluctuations δ is displayed in Fig. 1. The 
black curve is obtained from the devised AOS sample 
and the fabrication errors are not considered. While the 
fabrication errors are considered for the other curves, the 

Fig. 1. Variation of SHG conversion efficiency η for exact 
solution with the wavelength for different δ. The black, red, 
blue, and green curves represent δ = 0, 0.01, 0.03, and 0.05, 
 respectively.

Fig. 2. u2(xn) versus the sequence of domain n for the pre-
assigned wavelengths under different δ: (a) 0972, (b) 1.064, and 
(c) 1.283 µm. The black, red, blue, orange, and green curves 
represent δ = 0, 0.01, 0.03, 0.05, and 0.07, respectively.
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The model itself proves easy and convenient to  estimate 
the SHG conversion efficiency when pump depletion 
cannot be ignored. However, Eq. (5) is fitted for the 
case of the perfect AOS configuration, and for an actual 
sample, fabrication errors are inevitably involved. We 
now proceed to discuss whether the developed model 
is fitted for the case when fabrication errors are 
introduced in an actual AOS sample. Figure 3 shows 
the variation of σ versus u2(xn) under different δ for  
λ1 = 0.972 µm. The black curve represents the stan-
dard curve which can be obtained for Eq. (5), and the 
other red, blue, green, and orange curves stand for the 
case of δ = 0.01, 0.03, 0.05, and 0.07, respectively. It is 
clearly observed that the curves are inclined to deviate 
from the standard curve with increasing δ, except for  
δ = 0.01, which is nearly coincident with the black curve. 
There appears higher deviation with increasing δ. Note 
that the deviation of a relative tolerance curve from the 
standard one is related to the FW wavelength. Figure 4  
shows the relative tolerance curves for different FW 
wavelengths when δ is set to 5%. The black curve is the 
standard curve, and the red, blue, and green curves suc-
cessively correspond to λ = 1.283, 1.064, and 0.972 µm.  
Clearly, for λ = 0.972 µm, the relative tolerance curve 
displays serious deviation from the standard curve, 
whereas the departure degree is much smaller for  
λ = 1.283 µm.

In conclusion, we redraw the outcome obtained from an 
earlier work where the random fluctuation of the thick-
ness of each block in AOS is introduced due to the inevi-
table existence of fabrication errors in an actual sample. 
The results show that both the conversion efficiencies 
calculated in UPA and an exact solution are decreasing 
with increasing random fluctuation, and the decreas-
ing degree is related to the FW wavelength. The lon-
ger wavelength suffers from lesser reduction. A relative  

and the black, red, blue, orange, and green curves denote 
the case of δ = 0, 0.01, 0.03, 0.05, and 0.07, respectively. 
For the black curve, u2(xn) is monotonically increasing 
with n, which implies that the contribution of the indi-
vidual block on SHG process is positive, and the good 
phase matching between FW and SHW can be achieved 
in the perfect AOS sample. However, when the random 
fluctuation is introduced and becomes larger and larger 
(especially beyond 3%), the variation of u2(xn) appears 
to be oscillating and the oscillation behavior grows more 
severe with increasing δ. For example in Fig. 2(a), u2(xn) 
exhibits a dramatic decrease at n = 500, then begins 
to increase when n = 800. The same case is shown for  
λ = 1.064 µm, whereas for λ = 1.283 µm, the oscillation 
is much weaker. These results obtained here indicate 
that the random fluctuation leads to the phase mismatch 
between the FW and SHW. Moreover, the phase mis-
match is also related to wavelength, and the shorter the 
wavelength, the stronger the mismatch between the FW 
and SHW. This conclusion is also consistent with the 
fact obtained from Fig. 1 that the η for u2 shows less 
decrease for the longer wavelength with the same δ. 

In Ref. [18], a relative tolerance is defined as 
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between UPA and an exact solution. Here ( )2 nu x�  refers 
to the value calculated in UPA. It is found that the rela-
tive tolerance is solely determined by the SHG  conversion 
efficiency, but unrelated to the sample  configuration, the 
nonlinear media, and the incident intensity. A model to 
assess 2( )nu x  was assumed as

 ( ) ( ) ( )( )2
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Fig. 3. Variation of σ as a function of u2(xn) for λ = 0.972 µm. 
The black curve is the standard curve according to Eq. (5) and 
the red, blue, green, and orange curves denote the data for  
δ = 0.01, 0.03, 0.05, and 0.07, respectively.

Fig. 4. Relative tolerance σ with respect to u2(xn) for  different 
FW wavelengths under 5% random fluctuation. The black 
curve is the standard curve according to Eq. (5) and the red, 
blue, and green curves denote the data for λ = 1.283, 1 064, and 
0.972 µm, respectively.
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tolerance based on UPA and an exact solution is 
 calculated under different random fluctuations. It is found 
that the relative tolerance curves coincident with the 
standard curve only when the random fluctuation is very 
small (typically below 1%), and then exhibit more and 
more serious deviation with increasing δ. Moreover, the 
deviation degree is also related to the FW wavelength, 
the longer wavelength is closer to the standard curve.
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